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GROUP REDUCTION OF THE LAMi EQUATIONS* 

V.YU. PRUDNIKOV and YU.A. CHIRKUNOV 

Group reduction is realized with respect to a certain infinite Lie gxoup 

of transformations of the Lam& equations of the static theory of elas- 

ticity, which enables us to represent them as a combination of two systems 

of first-order differential equations: automorphic and resolving. The 

general solution found for the automorphic system is a multidimensional 

analogue of the Kolosov-Muskhelishvili formula. In the three-dimensional 

case the resolving system turns out to be conformally-invariant, while 

the Lam& equations themselves allow only a similarity group of three- 

dimensional Euclidean space. Because of the conformal invariance, trans- 

formations analogous to the Kelvin transformation exist for the resolving 

system. The general form of such transformations is presented. The 

structure of the resolving system enables us to introduce complex 

variables in a natural way in the three-dimensional case, which is con- 

venientfor constructing classes of exact solutions. Investigation of 

the group properties of the Lam& equations of classical elasticity theory 

started on the initiative of Ovsyannikov in /l/ in which the three- 

dimensional dynamic equations were examined. The static Lam& equations 

are studied below in an arbitrary space R* by group-analysis methods. 

1. Group reduction. The equilibrium state of a homogeneous elastic medium is described, 

when there are no mass forces, by the system of Lam6 equations 

(h +- p)Odiv u + P&I ~~ U 

(11 = (u,, u,. . ., Un), x ~- (I,, xz, . . ., In)) 
,(l.l) 

The displacement vector u is a function of the point I while h> 0, p> 0 are Lam& 

constants. 

The broadest Lie transformation group of the space Rzn (x, u) allowed by this system is 

obviously infinite-dimensional since the transformation 

n + u + u" (x) (4.2) 

(uo (x) is an arbitrary solution of (1.1)) conserves the system. These transformations form 

an infinite normal divisor over which the factor-group is finite-dimensional. The correspond- 

ing Lie algebra of the operators is found by a standard method /2/ and has the basis 

a,. x.8,, ~.a,, A(x).&- A(U).& 

Here A is an arbitrary antisymmetric transformation of the space R” while the angular 

brackets denote the transform under a linear mapping. 

Corresponding to each vector operator there are n scalars, for instance i3, = (3/3x1, aiaz,. 

., N&r,). 
We know /2/ that if a system of differential equations admits of a certain group, then 

the action of this group on the set of solutions of the system results in its partition into 

a class of equivalent solutions. The structure originating in the set of solutionsisdescribed 

as a result by two systems of differential equations: automorphic and resolving. The auto- 

morphic system characterises separate classes of equivalent solutions (the group acts transi- 

tively on its solutions), while the resolving system is the set of all such classes (the 

group acts identically on its solutions). Representation of the system in the form of its 

equivalent union of the automorphic and resolving systems is called group reduction of the 

system relative to this group. 
Let us carry out group reduction of (1.1) with respect to the infinite subgroup, generated 

by the operators V:h(e).a, contained in the normal divisor (1.2), where it (z) is an arbitrary 

harmonic function. We will first obtain the automorphic system. The invariants 

1,=x, I,=divu. I, = a,u - (&II)* 

can be selected as the basis of the differential invariants of the subgroup under consideration. 
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Denoting the invariants 1, and I, as functions of the invariant I,, we have the auto- 
morphic system 

(2 -I- ~~~)di~~u=0~x), &u - (a,~)* = w(x) (1.3) 

(the constant factor (2 +1/p) in front of divu is introduced to simplify the subsequent 
formulas). 

The resolving system has the form 

V9 + div w = 0 

a-c%(b,c> +b~do(c,a> -t o-aw<a,b)= 0 
(1.4) 

where a,b,c are arbitrary (trial) vectors from Rn. 
Let us transform the Lam6 equation by using the concept of tensor divergence f3/. By 

virtue of the identity 

Au = V div u -I- div (8,~ - (a,,~)*) 

the condition of compatibility of system (1.3) with system (1.1) will be the first equation 
of system (1.41. Its second equation is the condition of compatibility of system 11.3). 

The desired group reduction of the Lam& Eqs.cl.1) is the union of the automorphic system 
(1.3) and the resolving system (1.4). 

For n = 2, (1.4) is a Cauchy-Riemann system, which indeed permits successful application 
of methodsof complex variable function theory in plane static elasticity theory problems. 

2. Solution of the automorphic system. Any solution of the automorphic system 
(1.3) isobtained from one of its fixed solutions by transformation of the subgroup with respect 
to which the group reduction is performed. Consequently, the general solution of this system 
is given by the formula u(x)= Y(X)+ Vh(x), where v(x) is a certain particular solution 
and h(x) is an arbitrary harmonic function. Let us find the particular solution. 

A differential form of degree 2: 9 <a,b> = b.o <a>, corresponds to the antisymmetric 
tensor w, while a differential form of degree 1: c(a> = a.u corresponds to the vector u 
(a. b are arbitrary vectors in Rn). 

The second equation of system (1.3) is equivalent to the equation aCJ = 52, where d is 
the external differentiation operator. However, the second equation of system (1.4) is the 
condition for the form 51 to be closed. By virtue of the Poincarg theorem /4/, it follows 
from the second equation of the automorphic system (1.3) that (m(x) is a certain function) 

I1 
u(x)= j ~~)(~x)(x)dt -+Vcf(x) (2.1) 

After substituting (2.1) into the first equation of system (1.3) and a number of 
calculations using the first equation of system (1.41, we obtain Poisson's equation to seek 
the function q(x) 

Aip (x) = - $$ e.(x)+ 2 j te(lx)dt 
0 

Since 0(X) is a harmonic function, the right-hand side of this equation 
harmonic function. 

Lemma. If II, (4 is a harmonic function then the equation 

Acp (x) =: 9 (x) 

has a particular solution of the form 

rf (X) = $ j x 12 3 t-11/: (ix) clt 

0 

Proof. We will seek the solution of (2.3) in the form 
'p W = 'id I x I* f w 

(2.2) 

is also a 

(2.31 

(2.4) 

where f(x) is a harmonic function. Substitution into (2.3) results in a first-order equation. 
Introduction of the auxiliary function g(r)=f@x) yields an ordinary differential equation 
whose solution, bounded at the point x=0 has the form 



We find the function f from the formula i(x).= a(1); it is obviously harmonic. 
We will now obtain the particular solution of (2.2) according to the lemma by substitutirici 

the right-hand side of this equation into (2.4). The repeated integral occurring here iz 

transformed into a one-dimensional integral. After this, the general solution of the aut.o- 
morphic system is given by the Eormulas 

where h(x) is an arbitrary harmonic function. 

For n = ?, formula (2.5) is the known Kolosov-Muskhelishvili formula. For ?I> 2 formulas 

(2.5) and (2.6) can be considered as multidimensional analogues of this formula. They enable 

solutions of the La& equations to be obtained from the solutions 0, w of the resolving 

system (1.4). 

3. Group property of the resolving system. We will seek the operator allowed 

by the resolving system (1.4) in the form 

where g = (El, &, . . f,,), %I, ‘1 = (IImp) are the required functions of the variables x, 0, 0 = 

(&I,). 
In this case the solution of the sytem of governing equations depends substantially on 

the dimensionality n. 

For n = 2 system (1.4) agrees with the Cauchy-Riemann system and allows of an infinite 

conformal group. The coordinates cl, gz, Q, qrz (qzl = --Y,~) of operators of the form (3.1) 

for this group are defined as follows: the pairs (El,&) and (I]~, q12) are solutions of the 

Cauchy-Riemann system in both the independent variables .rl, s2 and the functions 8, o),?. 

For r&> 3 the principal group of system (1.4) is a similarity group of Euclidean n- 

space. The coordinates of the operators (3.1) forming its Lie algebra are 

: = A (x) -t- ax + a. 11~ == (SO, q = @I + Aw - 01~1 

Here A is an arbitrary antisymmetric transformation of the space R", a is an arbitrary 

vector from R", and a, p are arbitrary real numbers. These operators are a continuation of 

the principal group operators of the Lam; Eqs.cl.1) in the tensor 0). 

For n =3 it is convenient to pass from the antisymmetric tensor (11 to its correspond- 

ing vector 0 = rot u. The resolving system (1.4) is written in the form 

CO - rot o = 0, div w = 0 (3.2) 

The Lie algebra L,, of the principal group operators of this system has the basis 

X,=8,, X,=xxd,+~w ir, 

X,=-~x~~a,+zx(X.a,)t(X+O-2eX)i)O- 
2x(O.a,)+x x(w x a,-W,), X,=x.& 

x,=oae-eBao-6J x a,. _x,=eae+o.a, 

(there are three scalars for each of the vector operators). 

The subalgebra of L,, with basis X,, X, + '/,X6, X,, X, - X, and the subalgebra of L, 
with the basis X,,,X,, are ideals of the algebra L,, which can be represented in the form 
of a direct sum: L,, = L,, @ L,. The Lie algebra L,, is isomorphic to the Lie algebra of the 
conformal. group of three-dimensional Euclidean space. Finite transformations conserving 
system (3.2) correspond to operators of the algebra: X, is the translation in x,x, is the 
joint rotation in the spaces R3(x) and R3(m), X, is the uniform extension in x, X, is the 
rotation in the space R4(tl,co), and XS is the uniform extension in 6, o. 

Let us consider the transfoxmations generated by the generalized inversion operator X, = 
(X,1> X,,, X,,). We write the for the operator X,, say (a is a real parameter): 
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11’ = (x1 - a I x I”)/5, xm’ = x,/c (m = 2, 3) 

U’ = ~-@U; 5 = (1 - asJ” + CL2 (xzZ + x3*) 

El l-ax-, 0 - CCL3 ax2 

“= zt , R= 0 l---x, -ax, - ax3 

ax3 ax2 I- axI 0 

a.9 - ax2 axg 0 I- ax, L II 

Therefore, the group reduction executed for the Lam6 equations enables the symmetries 

which the Lam& equations themselves do not possess in the plane and three-dimensional cases 

that have physical meaning to be revealed. The principal group of the resolving system (3.2) 

is broader than the principal group of the Lam6 equations. The new operators X,,,X,,, X,, 

generating the conformal transformations expand the possibilities of constructing classes of 

particular solutions by using the group being allowed for the system (3.21, and therefore, 

for the Lam6 equations also, by virtue of (2.5). 
Leaving aside the plane cases which have been studied in detail in the theory of 

elasticity, we will henceforth examine the resolving system only for n = 3. 

4. Kelvin transformations. The presence of the generalized inversion operators XS 

indicates the existence of transformations of the Kelvin transformation type for the resolving 

system (3.2). By analogy with the latter we give the following definition: 

Definition. We call a Kelvin transformation for system (3.2) the transformation K having 

the following properties: 

1) It sets the function U: R3+ R4 in correspondence with the function defined by the 

equality U'(x) = K (x) X U (x/lx j2), where K (x) is a 4x4 matrix; 

2) If U(x) is a solution of system (3.2), then U'(x) is also a solution of this system. 

Theorem. All Kelvin transformations for system (3.2) are described by the following 

expression: 

K (x) = a,K, (x) + a,K, (x) + aBKJ (x) + a,& (x) 

II 11 0 x3 -p2!/ II x.2 -x3 0 4 

(c&n (m = 1, 2, 3, 4) are arbitrary real numbers). 

The proof consists of a direct evaluation of the matrix K(x) on the basis of the 

definition given above. 

We note certain properties of the basis Kelvin transformations K,. To write their 

composition we introduce matrices corresponding to the rotation operators 

The compositions of the basis 

is the identity transformation) 

M 

Kelvin transformations are determined by the matrices (I 

Z 43 -Qz -QI 

= -43 1 Q1 -Q, 

Its elements are the transformations Mpg = K,K,. 
It follows from the form of the matrix M, in particular, that any three basis Kelvin 

transformations can be obtained from the fourth because of the composition of this latter with 
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the transformations Q,, Qz, Q,; for example Ii, ~ Q,K, (p -: 1,2,3). 

5. Complex variables. The resolving system(3.2) consists of four scalar equ,>tions 
for four unknown scalar functions: the function H characterizing the volumetric deformatiol: 
and three components of the vector o :- (it),, fib?. %). Introduction of the complex dependent and 
independent variables 

enables us to write system (3.2) in the more compact form 

where a,, i3, are formal differentiation operators. 
Let us investigate the properties of system (5.2) by considering r,g,t as independent 

complex variables. 
If Z&U is a solution of system (5. 2) with the independent complex variables rc,y,t,then 

a solution of system (3.2) is obtained therefrom by means of (5.1). Conversely, if in any 
solution of the system (3.2) we change we complex functions U,V by means of (5-l), continue 
them analytically in f? and make a linear substitution in the complex independent variables 
by means of (5.1), then a solution of system (5.2) is obtained. 

System (5.2) admits of an ll-parameter fundamental Lie transformation group of the space 
cj (33.y. t. U, c) generated by the operators 

Y, -= a,, 1-z = ii,, Y,, ::z ti, 

It is convenient to use the complex system (5.2) to obtain exact solutions of system 
(3.2). 

We will present some examples of exact solutions of system (5.2) and we will indicate 
the nature of the corresponding solutions of system (3.2). 

lo. A solution invariant under a subgroup with operator Y," is a solution of rank 2 and 
has the form 

where f,g are arbitrary analytic functions. The corresponding 
be invariant under the subgroup generated by the operator X,,. 

2O. A solution invariant under the subgroup defined by the 
It is 

U = 4y-I'2 ity+i (I) + &J (3)jj 

soiution of system (3.2) will 

operator YS is also of rank 2. 

where f, g are arbitrary analytic functions. The solution of system (3.2) therefore obtained 
by means of (5.1) is not invariant under any of the subgroups allowed by this system. 

3O. We will consider simple waves of system (5.2). Their parametric representation with 
the complex parameter E= s(z,y,t) has the form 

U = U (E), " = " (8) (5.3) 

Substitution into system (5.2) yields a system of equations connecting the desired func- 
tions (5.3) and the desired parameter 

E*U' = e,u', E,Y' = 13"U' 

where the prime denotes the derivative with respect to E. Analysis of this system shows that 
u (8) and u (8) remain arbitrary analytic functions while the wave parameter is defined 
implicitly by the equation 
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+u’2 +- yu’2 + tu’u’ = j (8) (5.4) 

where f is an arbitrary analytic function. 
To obtain the corresponding solution of system (3.2) it is convenient to select E=V 

as the parameter. Changing to real variables by means of (5.1) we obtain the double wave of 
system (3.2) 

R = v, (01. (4. -3 = * (on o2) 

in which the functions rp,$ satisfy the Cauchy-Riemann conditions. 
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BOUNDARIES OF 

S.B. VIGDERGAUZ 

The necessary conditions for the existence of systems of surfaces or plane 
curves of special shape determined from mechanical considerations, by 
potential theory methods, are found, a number of integral identities is 
constructed, and certain modifications of the Robin problem are solved. 

1. A linearly elastic homogeneous and istoropic three-dimensional domain S of the space 
E is considered which is weakened by a set of m non-intersecting closed cavities S,- with 
smooth boundaries l?k (k = i,&...,na) and is loaded by remote forces PI (i =$,2,3) along 
the axes of an x&J, Cartesian coordinate system, G, Y are the elastic moduli of the 
medium, and I,(z), l,(r) are stress tensor invariants at an arbitrary point z = (~~,.r~,z~). 

The boundary r = U rk is called equally-strong for a given load [I] if the identity 
II (5)= const holds at any of its points E = (Ei, &, E3). The constant on the right-hand side 
equals P, -l-P, + Pa = P. It is proved in III that such a boundary minimizes the maximumvalue, 
over the domain, of the local Mises plasticity criterion F (x) = z,2 (t) -31,(r)), thereby being 
the solution of the following optimal control type problem: 

max F(r)- min 
z&s+m trt 

(1.f) 

Since the function F(x) is invariant under a similarity transformation of the coordinates, 
the optimal boundary according to (l.l), if it exists, is not defined uniquely, but to at 
least the accuracy of a scale given by an arbitrary factor C. Indeed, the class of solutions 
is significantly broader in many cases, which is utilized substantially in Sect.3. 

It has been established /l/ that the components ofthe displacement vector u(z) of the 
state of stress corresponding to a perturbation induced in the homogeneous field of cavities 
are harmonic functions in the domain S that decrease at 'infinity as O(Iz I-"), take values 
on the optimal boundary that are proportional to the corresponding coordinate at the point 
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